Inositol 1,4,5-trisphosphate-gated conductance in isolated rat olfactory neurons.
نویسندگان
چکیده
1. The effect of intracellular application of inositol 1,4,5-trisphosphate (IP3) from the patch pipette was analyzed in isolated rat olfactory neurons under whole-cell patch clamp. 2. Intracellular dialysis of 10 microM 1,4,5-IP3 in K(+)-internal solution induced a sustained depolarization of 35.8 +/- 10.5 (SD) mV (n = 16). The IP3-induced response was observed in 75% of the cells dialyzed with IP3 but not when 10 microM ruthenium red was also included in the pipette solution (4 cells). Lower concentrations (50-100 nM) of 2,4,5-IP3 induced similar responses to those produced by 1,4,5-IP3 in five of eight olfactory neurons. 3. Steady-state I-V relationships of IP3-gated currents with K(+)-internal solution were classified into two types: outwardly rectifying and N-shaped. In Cs(+)-internal solution outwardly rectifying and linear patterns were observed. 4. The IP3-induced currents were inhibited by external Cd2+ (1 mM). The reversal potentials of the Cd(2+)-inhibitable currents were -16.1 mV (n = 2) and -29.0 +/- 7.1 mV (n = 3) for the outwardly rectifying and N-shaped types, respectively, in K(+)-internal solution. The reversal potential was -5.9 +/- 6.8 mV (n = 5) in the Cs(+)-internal solution. 6. In contrast, the Ca(2+)-ionophore, ionomycin (5 microM) hyperpolarized the olfactory neurons and greatly potentiated the outward currents at positive holding membrane potential. 7. The data suggest that IP3 can depolarize rat olfactory neurons without mediation by intracellular Ca2+.
منابع مشابه
Comparison of a Ca(2+)-gated conductance and a second-messenger-gated conductance in rat olfactory neurons.
The effect of a rise in intracellular Ca(2+) concentration was analyzed in isolated rat olfactory neurons using a whole-cell patch-clamp technique. Intracellular dialysis of 1 mmol l(-)(1) Ca(2+) in a standard-K(+), low-Cl(-) internal solution (E(Cl)=-69 mV) from the patch pipette into the olfactory neurons induced a sustained outward current of 49+/-5 pA (N=13) at -50 mV in all the cells exami...
متن کاملCyclic AMP cascade mediates the inhibitory odor response of isolated toad olfactory receptor neurons.
Odor stimulation may excite or inhibit olfactory receptor neurons (ORNs). It is well established that the excitatory response involves a cyclic AMP (cAMP) transduction mechanism that activates a nonselective cationic cyclic nucleotide-gated (CNG) conductance, accompanied by the activation of a Ca2+-dependent Cl(-) conductance, both causing a depolarizing receptor potential. In contrast, odor in...
متن کاملNeuronal inositol 1,4,5-trisphosphate receptor localized to the plasma membrane of olfactory cilia.
Both the cyclic adenosine 3',5'-monophosphate and the phosphoinositide second messenger systems are involved in olfactory signal transduction. The inositol 1,4,5-trisphosphate receptor is one of the principal intracellular calcium channels responsible for mobilizing stored calcium. The precise location of the 1,4,5-trisphosphate receptor (endoplasmic reticulum vs surface) and its role in the ev...
متن کاملType-specific inositol 1,4,5-trisphosphate receptor localization in the vomeronasal organ and its interaction with a transient receptor potential channel, TRPC2.
The vomeronasal organ (VNO) is the receptor portion of the accessory olfactory system and transduces chemical cues that identify social hierarchy, reproductive status, conspecifics and prey. Signal transduction in VNO neurons is apparently accomplished via an inositol 1,4,5-trisphosphate (IP3)-activated calcium conductance that includes a different set of G proteins than those identified in ver...
متن کاملInositol 1,4,5-trisphosphate receptor binding: autoradiographic localization in rat brain.
Inositol 1,4,5-trisphosphate is a second messenger generated by stimulation of the phosphoinositide cycle, thought to release calcium from intracellular stores. We have mapped the distribution of 3H-inositol 1,4,5-trisphosphate receptor binding sites in rat brain by autoradiographic techniques. The cerebellum contains the highest level of inositol 1,4,5-trisphosphate binding sites in brain, whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 71 2 شماره
صفحات -
تاریخ انتشار 1994